Rab11 regulates exocytosis of recycling vesicles at the plasma membrane.
نویسندگان
چکیده
Rab11 is known to associate primarily with perinuclear recycling endosomes and regulate recycling of endocytosed proteins. However, the recycling step in which Rab11 participates remains unknown. We show here that, in addition to causing tubulation of recycling endosomes, Rab11 depletion gives rise to accumulation of recycling carriers containing endocytosed transferrin and transferrin receptor beneath the plasma membrane. We also show that the carriers are transported from perinuclear recycling endosomes to the cell periphery along microtubules. Total internal reflection fluorescence microscopy of cells expressing EGFP-tagged transferrin receptor revealed that Rab11 depletion inhibits tethering and fusion of recycling carriers to the plasma membrane. Depletion of Sec15, which interacts with Rab11, or Exo70, both components of the exocyst tethering complex, leads to essentially the same phenotypes as those of Rab11 depletion. Thus, in addition to its role in recycling processes at perinuclear recycling endosomes, Rab11 is transported along microtubules to the cell periphery through association with recycling carriers, and directly regulates vesicle exocytosis at the plasma membrane in concert with the exocyst.
منابع مشابه
Drosophila Pkaap regulates Rab4/Rab11-dependent traffic and Rab11 exocytosis of innate immune cargo
The secretion of immune-mediators is a critical step in the host innate immune response to pathogen invasion, and Rab GTPases have an important role in the regulation of this process. Rab4/Rab11 recycling endosomes are involved in the sorting of immune-mediators into specialist Rab11 vesicles that can traffic this cargo to the plasma membrane; however, how this sequential delivery process is re...
متن کاملBio012146 910..920
We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnRcontaining...
متن کاملBio012146 1..11
We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnRcontaining...
متن کاملSNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles
We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)-transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn-TfnR-containin...
متن کاملGTP Hydrolysis of TC10 Promotes Neurite Outgrowth through Exocytic Fusion of Rab11- and L1-Containing Vesicles by Releasing Exocyst Component Exo70
The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 125 Pt 17 شماره
صفحات -
تاریخ انتشار 2012